Search results for "Proximity point"
showing 10 items of 18 documents
Best proximity point theorems for proximal cyclic contractions
2017
The purpose of this article is to compute a global minimizer of the function $$x\longrightarrow d(x, Tx)$$ , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation $$Tx=x$$ when T is not necessarily a self-mapping.
A best proximity point approach to existence of solutions for a system of ordinary differential equations
2019
We establish the existence of a solution for the following system of differential equations (y x ′′((t t ) ) = = g f ((t t ,y x ((t t )) )) ,y x ((t t 0 0) ) = = x x *** in the space of all bounded and continuous real functions on [0, +∞[. We use best proximity point methods and measure of noncompactness theory under suitable assumptions on f and g. Some new best proximity point theorems play a key role in the above result.
Best Proximity Point Results in Non-Archimedean Fuzzy Metric Spaces
2013
We consider the problem of finding a best proximity point which achieves the minimum distance between two nonempty sets in a non-Archimedean fuzzy metric space. First we prove the existence and uniqueness of the best proximity point by using di fferent contractive conditions, then we present some examples to support our best proximity point theorems.
Best Proximity Points for Some Classes of Proximal Contractions
2013
Given a self-mapping g: A → A and a non-self-mapping T: A → B, the aim of this work is to provide sufficient conditions for the existence of a unique point x ∈ A, called g-best proximity point, which satisfies d g x, T x = d A, B. In so doing, we provide a useful answer for the resolution of the nonlinear programming problem of globally minimizing the real valued function x → d g x, T x, thereby getting an optimal approximate solution to the equation T x = g x. An iterative algorithm is also presented to compute a solution of such problems. Our results generalize a result due to Rhoades (2001) and hence such results provide an extension of Banach's contraction principle to the case of non-s…
A note on best approximation in 0-complete partial metric spaces
2014
We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.
Best proximity point results for modified α-proximal C-contraction mappings
2014
First we introduce new concepts of contraction mappings, then we establish certain best proximity point theorems for such kind of mappings in metric spaces. Finally, as consequences of these results, we deduce best proximity point theorems in metric spaces endowed with a graph and in partially ordered metric spaces. Moreover, we present an example and some fixed point results to illustrate the usability of the obtained theorems. MSC:46N40, 46T99, 47H10, 54H25.
Best proximity point theorems for rational proximal contractions
2013
Abstract We provide sufficient conditions which warrant the existence and uniqueness of the best proximity point for two new types of contractions in the setting of metric spaces. The presented results extend, generalize and improve some known results from best proximity point theory and fixed-point theory. We also give some examples to illustrate and validate our definitions and results. MSC:41A65, 46B20, 47H10.
Best approximation and variational inequality problems involving a simulation function
2016
We prove the existence of a g-best proximity point for a pair of mappings, by using suitable hypotheses on a metric space. Moreover, we establish some convergence results for a variational inequality problem, by using the variational characterization of metric projections in a real Hilbert space. Our results are applicable to classical problems of optimization theory.
Common best proximity points and global optimal approximate solutions for new types of proximal contractions
2015
Let $(\mathcal{X},d)$ be a metric space, $\mathcal{A}$ and $\mathcal{B}$ be two non-empty subsets of $\mathcal{X}$ and $\mathcal{S},\mathcal{T}: \mathcal{A} \to \mathcal{B}$ be two non-self mappings. In view of the fact that, given any point $x \in \mathcal{A}$, the distances between $x$ and $\mathcal{S}x$ and between $x$ and $\mathcal{T}x$ are at least $d(\mathcal{A}, \mathcal{B}),$ which is the absolute infimum of $d(x, \mathcal{S} x)$ and $d(x, \mathcal{T} x)$, a common best proximity point theorem affirms the global minimum of both the functions $x \to d(x, \mathcal{S}x)$ and $x \to d(x, \mathcal{T}x)$ by imposing the common approximate solution of the equations $\mathcal{S}x = x$ and $…
Three existence theorems for weak contractions of Matkowski type
2010
We prove three generalizations of Matkowski’s fixed point theorems for weakly contractions.