Search results for "Proximity point"

showing 10 items of 18 documents

Best proximity point theorems for proximal cyclic contractions

2017

The purpose of this article is to compute a global minimizer of the function $$x\longrightarrow d(x, Tx)$$ , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation $$Tx=x$$ when T is not necessarily a self-mapping.

021103 operations researchProximal cyclic contractionApplied Mathematics010102 general mathematicsMathematical analysisBest proximity point0211 other engineering and technologies02 engineering and technologyFunction (mathematics)Fixed pointTopology01 natural sciencesComplete metric spaceCyclic contractionSettore MAT/05 - Analisi MatematicaModeling and SimulationPoint (geometry)Global minimizationGeometry and Topology0101 mathematicsApproximate solutionMathematics
researchProduct

A best proximity point approach to existence of solutions for a system of ordinary differential equations

2019

We establish the existence of a solution for the following system of differential equations (y x ′′((t t ) ) = = g f ((t t ,y x ((t t )) )) ,y x ((t t 0 0) ) = = x x *** in the space of all bounded and continuous real functions on [0, +∞[. We use best proximity point methods and measure of noncompactness theory under suitable assumptions on f and g. Some new best proximity point theorems play a key role in the above result.

System of differential equationsBest proximity point (pair)Settore MAT/05 - Analisi MatematicaStrictly convex Banach spaceCyclic (noncyclic) generalized condensing operator
researchProduct

Best Proximity Point Results in Non-Archimedean Fuzzy Metric Spaces

2013

We consider the problem of finding a best proximity point which achieves the minimum distance between two nonempty sets in a non-Archimedean fuzzy metric space. First we prove the existence and uniqueness of the best proximity point by using di fferent contractive conditions, then we present some examples to support our best proximity point theorems.

Discrete mathematicsLogicApplied MathematicsMinimum distanceBest proximity pointComputational intelligenceNon-Archimedean fuzzy metric spaceManagement Science and Operations ResearchTopologyIndustrial and Manufacturing EngineeringFuzzy metric spaceTheoretical Computer ScienceArtificial IntelligenceControl and Systems EngineeringSettore MAT/05 - Analisi MatematicaPoint (geometry)Best approximationUniquenessInformation SystemsMathematics
researchProduct

Best Proximity Points for Some Classes of Proximal Contractions

2013

Given a self-mapping g: A → A and a non-self-mapping T: A → B, the aim of this work is to provide sufficient conditions for the existence of a unique point x ∈ A, called g-best proximity point, which satisfies d g x, T x = d A, B. In so doing, we provide a useful answer for the resolution of the nonlinear programming problem of globally minimizing the real valued function x → d g x, T x, thereby getting an optimal approximate solution to the equation T x = g x. An iterative algorithm is also presented to compute a solution of such problems. Our results generalize a result due to Rhoades (2001) and hence such results provide an extension of Banach's contraction principle to the case of non-s…

Mathematical optimizationmetric spacesArticle SubjectIterative methodApplied Mathematicslcsh:MathematicsWork (physics)proximal contractionbest proximity pointExtension (predicate logic)Resolution (logic)lcsh:QA1-939Nonlinear programmingReal-valued functionPoint (geometry)Settore MAT/03 - GeometriaContraction principleAnalysisMathematicsAbstract and Applied Analysis
researchProduct

A note on best approximation in 0-complete partial metric spaces

2014

We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.

Discrete mathematicsArticle SubjectApplied MathematicsInjective metric spacelcsh:MathematicsT-normlcsh:QA1-939Intrinsic metricConvex metric spaceUniform continuityMetric spaceFréchet spaceSettore MAT/05 - Analisi Matematica0-completeness best proximity point fixed point partial metric spaceMetric (mathematics)AnalysisMathematics
researchProduct

Best proximity point results for modified α-proximal C-contraction mappings

2014

First we introduce new concepts of contraction mappings, then we establish certain best proximity point theorems for such kind of mappings in metric spaces. Finally, as consequences of these results, we deduce best proximity point theorems in metric spaces endowed with a graph and in partially ordered metric spaces. Moreover, we present an example and some fixed point results to illustrate the usability of the obtained theorems. MSC:46N40, 46T99, 47H10, 54H25.

Pure mathematicsInjective metric spaceApplied Mathematicsmetric spacebest proximity pointFixed pointTopologyConvex metric spaceIntrinsic metricLeast fixed pointMetric spacefixed pointSettore MAT/05 - Analisi MatematicaMetric mapGeometry and TopologyCoincidence pointMathematicsFixed Point Theory and Applications
researchProduct

Best proximity point theorems for rational proximal contractions

2013

Abstract We provide sufficient conditions which warrant the existence and uniqueness of the best proximity point for two new types of contractions in the setting of metric spaces. The presented results extend, generalize and improve some known results from best proximity point theory and fixed-point theory. We also give some examples to illustrate and validate our definitions and results. MSC:41A65, 46B20, 47H10.

Discrete mathematicsPure mathematicsMetric spaceDifferential geometrySettore MAT/05 - Analisi MatematicaApplied MathematicsProximity problemsUniquenessGeometry and TopologyFixed pointPoint theorybest proximity point contraction fixed point generalized proximal contraction optimal approximate solutionMathematicsFixed Point Theory and Applications
researchProduct

Best approximation and variational inequality problems involving a simulation function

2016

We prove the existence of a g-best proximity point for a pair of mappings, by using suitable hypotheses on a metric space. Moreover, we establish some convergence results for a variational inequality problem, by using the variational characterization of metric projections in a real Hilbert space. Our results are applicable to classical problems of optimization theory.

Applied Mathematics010102 general mathematicsMathematical analysisHilbert spacebest proximity pointFunction (mathematics)variational inequality01 natural sciencesmetric projectionConvex metric space010101 applied mathematicssymbols.namesakeMetric spaceDifferential geometrySettore MAT/05 - Analisi MatematicaVariational inequalityMetric (mathematics)proximal Z-contractionsymbolsApplied mathematicsContraction mappingGeometry and TopologySettore MAT/03 - Geometria0101 mathematicsMathematics
researchProduct

Common best proximity points and global optimal approximate solutions for new types of proximal contractions

2015

Let $(\mathcal{X},d)$ be a metric space, $\mathcal{A}$ and $\mathcal{B}$ be two non-empty subsets of $\mathcal{X}$ and $\mathcal{S},\mathcal{T}: \mathcal{A} \to \mathcal{B}$ be two non-self mappings. In view of the fact that, given any point $x \in \mathcal{A}$, the distances between $x$ and $\mathcal{S}x$ and between $x$ and $\mathcal{T}x$ are at least $d(\mathcal{A}, \mathcal{B}),$ which is the absolute infimum of $d(x, \mathcal{S} x)$ and $d(x, \mathcal{T} x)$, a common best proximity point theorem affirms the global minimum of both the functions $x \to d(x, \mathcal{S}x)$ and $x \to d(x, \mathcal{T}x)$ by imposing the common approximate solution of the equations $\mathcal{S}x = x$ and $…

common best proximity pointproximally commuting mappingsSettore MAT/05 - Analisi Matematicaoptimal approximate solution
researchProduct

Three existence theorems for weak contractions of Matkowski type

2010

We prove three generalizations of Matkowski’s fixed point theorems for weakly contractions.

fixed point best proximity point cyclic weak contraction property UC.Settore MAT/05 - Analisi Matematica
researchProduct